Journal of Classification 23:175-197 (2006)
DOI: 10.1007/s00357-006-0012-4

SPECIAL INVITED ARTICLE

Recent Advancesin Predictive (Machine) Learning

Jerome H. Friedman

Stanford University

Abstract: Prediction involves estimating the unknown value of an attribute of a system
under study given the values of other measured attributes. In predfpimechine) learn-

ing the prediction rule is derived from data consisting of previously sobasgs. Most
methods for predictive learning were originated many years ago atthe df the com-
puter age. Recently two new techniques have emerged that have redithiezéeld.
These are support vector machines and boosted decision trees. apkispgrovides an
introduction to these two new methods tracing their respective ancesitaltoostandard
kernel methods and ordinary decision trees.

Keywords. Machine learning; Boosting; Support vector machine; Kernel methDe-
cision trees.

This article is based on a Keynote Address presented at the 68th Anragdinigl of the
Psychometric Society, Cagliari (Sardinia), Italy, July 7-10, 2003. fdéfiscussions with Trevor
Hastie are gratefully acknowledged. This work was partially supportedépepartment of En-
ergy under contract DE-AC03-76SF00515, and by grant DMS68431 of the National Science
Foundation.

Author’s Address: Department of Statistics and Stanford Linear AcateleCenter, Stan-
ford, CA 94305 USA, e-mail: jhf@stanford.edu

176 J.H. Friedman

1. Introduction

The predictive or machine learning problem is easy to statdfitult to
solve in general. Given a set of measured values of attshtharacteristics/
properties on a object (observation)= (x1,x9,- - -, z,) (often called “vari-
ables”) the goal is to predict (estimate) the unknown valugnother attribute
y. The quantityy is called the “output” or “response” variable, and =
{z1,---,z,} are referred to as the “input” or “predictor” variables. Thegtic-
tion takes the form of function

Q:F(Ilv'xQ?"'ul‘n) :F(X)

that maps a poink in the space of all joint values of the predictor variables,
to a pointy in the space of response values. The goal is to produce a “good”
predictive F'(x). This requires a definition for the quality, or lack of quality,
of any particularF'(x). The most commonly used measure of lack of quality
is prediction “risk”. One defines a “loss” criterion that reflethe cost of mis-
takes: L(y, 7) is the loss or cost of predicting a valgeor the response when
its true value isy. The prediction risk is defined as the average loss over all
predictions

R(F) = EyL(y, F(x)))

where the average (expected value) is over the joint (ptipadedistribution of

all of the variablegy, x) which is represented by a probability density function
p(y,x). Thus, the goal is to find a mapping functiétix) with low predictive
risk.

Given a functionf of elementso in some set, the choice af that gives
the smallest value of (w) is calledarg min,, f (w). This definition applies to
all types of sets including numbers, vectors, colors, ocfiams. In terms of
this notation the optimal predictor with lowest predictiigk (called the “target
function”) is given by

F*(x) = arg min R(F(x)). (2)
F(x)
Given joint values for the input variables the optimal prediction for the output
variable isy = F*(x).

When the response takes on numeric vajuesR!, the learning problem
is called “regression” and commonly used loss functionkimhe absolute error
L(y, F) = |y — F|, and even more commonly squared—etoy, F) = (y —
F)? because algorithms for minimization of the correspondisk tend to be
much simpler. In the “classification” problem the respongeseon a discrete
set of K unorderable categorical values (names or class labels)e {ci, - -

-, cx } and the loss criterioi, » becomes a discret€ x K matrix.

Predictive (Machine) Learning 177

There are a variety of ways one can go about trying to find a gcexdiqir
ing function F'(x). One might seek the opinions of domain experts, formally
codified in the “expert systems” approach of artificial inggince. In predictive
or machine learning one uses data. A “training” data base

D = {yi,xi1, Tiz, - i} = {yi, xi } (3)

of N previously solved cases is presumed to exist for which theegaof all
variables (response and predictors) have been jointly uneds A “learning”
procedure is applied to these data in order to extract (astha good predict-

ing functionF'(x). There are a great many commonly used learning procedures.
These include linear/logistic regression, neural netwddmel methods, deci-
sion trees, multivariate splines (MARS), etc. For desarifdiof a large number

of such learning procedures see Hastie, Tibshirani and fRaaed2001).

Most machine learning procedures have been around for ailmegand
most research in the field has concentrated on producing redfimsno these
long standing methods. However, in the past several years thas been a
revolution in the field inspired by the introduction of two nepproaches: the
extension of kernel methods to support vector machinesni¥d®96), and the
extension of decision trees by boosting (Freund and Shap6; I=riedman
2001). It is the purpose of this paper to provide an introducto these new
developments. First the classic kernel and decision trelbadstare introduced.
Then the extension of kernels to support vector machinesisited, followed
by a description of applying boosting to extend decisioe treethods. Finally,
similarities and differences between these two approaweiiese discussed.

Although arguably the most influential recent developmenipport vec-
tor machines and boosting are not the only important adwircenachine
learning in the past several years. Owing to space limitatihhese are the
ones discussed here. There have been other important devaitpthat have
considerably advanced the field as well. These include (but@rémited to)
the bagging and random forest techniques of Breiman (19981)2that are
somewhat related to boosting, and the reproducing kerrlbeHispace meth-
ods of Wahba (1990) that share similarities with supportaremachines. It is
hoped that this article will inspire the reader to invesighese as well as other
machine learning procedures.

2. Kernel Methods

Kernel methods for predictive learning were introduced bydaraya
(1964) and Watson (1964). Given the training data (3), tepaase estimate
g for a set of joint values is taken to be a weighted average of the training
responsesy; }V:

178 J.H. Friedman

N N
§=Fn(x) =Y i Kxx) /[Y Kxx). (4)
i=1 i=1

The weightK (x, x;) assigned to each response vajudepends on its location
x; in the predictor variable space and the locatiomwhere the prediction is
to be made. The functioA (x, x’) defining the respective weights is called the
“kernel function”, and it defines the kernel method. Oftenftiven of the kernel
function is taken to be

K(x,x') = g(d(x,x') /o) ()

whered(x, x’) is a defined “distance” betweenandx’, ¢ is a scale (“smooth-
ing”) parameter, andg(z) is a (usually monotone) decreasing function with
increasingz; often g(z) = exp(—z2/2). Using this kernel (5), the estimate
7 (4) is a weighted average ¢f; }\¥, with more weight given to observations
i for which d(x,x;) is small. The value ob defines “small”. The distance
functiond(x, x") must be specified for each particular application.

Kernel methods have several advantages that made make ttem p
tially attractive. They represent a universal approximadgrthe training sam-
ple sizeN becomes arbitrarily largey — oc, the kernel estimate (4) (5) ap-
proaches the optimal predicting target function @y,(x) — F*(x), provided
the value chosen for the scale parametes a function ofV approaches zero,
o(N) — 0, at a slower rate that/N. This result holds for almost any distance
functiond(x, x’); only very mild restrictions (such as convexity) are reqdir
Another advantage of kernel methods is that no trainingdsired to build a
model; the training data set the model. Also, the procedure is conceptually
quite simple and easily explained.

Kernel methods suffer from some disadvantages that hawehesp from
becoming highly used in practice, especially in data mirpglications. Since
there is no model, they provide no easily understood modahzary. Thus,
they cannot be easily interpreted. There is no way to discewnthe function
Fyn(x) (4) depends on the respective predictor variablesKernel methods
produce a “black—box” prediction machine. In order to ma&eheprediction,
the kernel method needs to examine the entire data base.€biges enough
random access memory to store the entire data set, and thmitation required
to make each prediction is proportional to the training sarszeN. For large
data sets this is much slower than that for competing methods

Perhaps the most serious limitation of kernel methods issttal. For
anyfinite N, performance (prediction accuracy) dependscally on the cho-
sen distance functiod(x, x’), especially for regression € R'. When there
are more than a few predictor variables, even the largest skts produce a
very sparse sampling in the correspondinrgdimensional predictor variable

Predictive (Machine) Learning 179

space. This is a consequence of the so called “curse—of—diomatiity” (Bell-
man 1961). In order for kernel methods to perform well, tretatice function
must be carefully matched to the (unknown) target funct)ndnd the proce-
dure is not very robust to mismatches.

As an example, consider the often used Euclidean distancéidan

1/2
n /

d(x,x') = Z(mj - l‘;)Q . (6)

J=1

If the target function™(x) dominately depends on only a small subset of the
predictor variables, then performance will be poor becdlisdernel function
(5) (6) depends on all of the predictors with equal strentjtone happened to
know whichvariables were the important ones, an appropriate kerngtldme
constructed. However, this knowledge is often not ava@laBluch “kernel cus-
tomizing” is a requirement with kernel methods, but it iffidiilt to do without
considerable a priori knowledge concerning the problenaatih

The performance of kernel methods tends to be fairly insgadiv the
detailed choice of the function(z) (5), but somewhat more sensitive to the
value chosen for the smoothing parameter A good value depends on the
(usually unknown) smoothness properties of the targettiomd™ (x), as well
as the sample siz& and the signal/noise ratio.

3. Decision Trees

Decision trees were developed largely in response to thigations of
kernel methods. Detailed descriptions are contained inagi@phs by Brie-
man, Friedman, Olshen, and Stone (1983), and by Quinlan (19%#) mini-
mal description provided here is intended as an introdoctidficient for un-
derstanding what follows.

A decision tree partitions the space of all joint predictariable val-
uesx into J—disjoint regions{R;}{. A response valug; is assigned to each
corresponding regioi;. For a given set of joint predictor values the tree
predictiony = T;(x) assigns as the response estimate, the value assigned to
the region containing:

x € Rj = Ty(x) =0 . ©)

Given a set of regions, the optimal response values asedaiath each one are
easily obtained, namely the value that minimizes predictisk in that region

iy = axgmin By[L(y,/) | x € Ry ®

180 J.H. Friedman

The difficult problem is to find a good set of regiofi8;}{. There are a huge
number of ways to partition the predictor variable space,vhst majority of
which would provide poor predictive performance. In theteahof decision
trees, choice of a particular partition directly corresp®mo choice of a dis-
tance functiond(x, x’) and scale parameterin kernel methods. Unlike with
kernel methods where this choice is the responsibility efuser, decision trees
attempt to use the data to estimate a good patrtition.

Unfortunately, finding the optimal partition requires cortgiion that
grows exponentially with the number of regiods so that this is only possi-
ble for very small values of . All tree based methods use a greedy top—down
recursive partitioning strategy to induce a good set ofaeggiven the training
data set (3). One starts with a single region covering thiessspace of all joint
predictor variable values. This is partitioned into two cew by choosing an
optimal splitting predictor variable; and a corresponding optimal split point
s. Pointsx for whichz; < s are defined to be in the left daughter region, and
those for whichr; > s comprise the right daughter region. Each of these two
daughter regions is then itself optimally partitioned itt@ daughters of its
own in the same manner, and so on. This recursive partitiacconginues until
the observations within each region all have the same regpealuey. At this
point a recursive recombination strategy (“tree pruning®mployed in which
sibling regions are in turn merged in a bottom—up mannet tirginumber of
regionsJ* that minimizes an estimate of future prediction risk is rest(see
Breiman, Friedman, Olshen, and Stone 1983, Ch. 3).

3.1 Decision TreeProperties

Decision trees are the most popular predictive learnindhateused in
data mining. There are a number of reasons for this. As withédenethods,
decision trees represent a universal method. As the tgaoita set becomes
arbitrarily large,N — oo, tree based predictions (7) (8) approach those of the
target function (2)1;(x) — F*(x), provided the number of regions grows
arbitrarily large,J(N) — oo, but at rate slower thaiy.

In contrast to kernel methods, decision trees do producedehsum-
mary. It takes the form of a binary tree graph. The root noddefttee rep-
resents the entire predictor variable space, and the (fpht)rgo its daughter
regions. Edges connect the root to two descendent nodes bel®present-
ing these two daughter regions and their respective splitd, so on. Each
internal node of the tree represents an intermediate regidrits optimal split,
defined by a one of the predictor variablesand a slit points. The terminal
nodes represent the final region $ét;}{ used for prediction (7). It is this
binary tree graphic that is most responsible for the pojiylaf decision trees.

Predictive (Machine) Learning 181

No matter how high the dimensionality of the predictor vhlgaspace, or how
many variables are actually used for prediction (splitsg ¢ntire model can
be represented by this two—dimensional graphic, which egplditted and then
examined for interpretation.

Tree based models have other advantages as well that adooulnéir
popularity. Training (tree building) is relatively fastaing asn/V log NV with
the number of variables and training observation¥. Subsequent prediction
is extremely fast, scaling dsg J with the number of regiong. The predictor
variables need not all be numeric valued. Trees can sedynlEssommodate
binary and categorical variables. They also have a very etegay of dealing
with missing variable values in both the training data aridrieiobservations to
be predicted (see Breiman et al. 1983, Ch. 5.3).

One property that sets tree based models apart from all tetbleniques
is their invariance to monotone transformations of the jotedvariables. Re-
placing any subset of the predictor variabfes } by (possibly different) ar-
bitrary strictly monotone functions of thefnz; < m;(z;)}, gives rise to the
same tree model. Thus, there is no issue of having to experinvitndifferent
possible transformations;(z;) for each individual predictat;, to try to find
the best ones. This invariance provides immunity to the piesef extreme
values “outliers” in the predictor variable space. It alsovides invariance to
changing the measurement scales of the predictor variagagething to which
kernel methods can be very sensitive.

Another advantage of trees over kernel methods is fairli higgistance
to irrelevant predictor variables. As discussed in Sectipth@ presence of
many such irrelevant variables can highly degrade the paence of kernel
methods based on generic kernels that involve all of theigiedvariables
such as (6). Since the recursive tree building algorithmredgs the optimal
variable on which to split at each step, predictors unrdl&ighe response tend
not to be chosen for splitting. This is a consequence of atiempo find a
good partition based on the data. Also, trees have few teradrlameters so
they can be used as an “off-the—shelf” procedure.

The principal limitation of tree based methods is that inatitans not
especially advantageous to them, their performance tewsids e competitive
with other methods that might be used in those situationg. gdoblem limiting
accuracy is the piecewise—constant nature of the prediatimdel. The predic-
tionsy; (8) are constant within each regidt) and sharply discontinuous across
region boundaries. This is purely an artifact of the moded, anget functions
F*(x) (2) occurring in practice are not likely to share this prapeAnother
problem with trees is instability. Changing the values st pufew observations
can dramatically change the structure of the tree, and antislly change its
predictions. This leads to high variance in potential prioiis 7';(x) at any

182 J.H. Friedman

particular prediction poink over different training samples (3) that might be
drawn from the system under study. This is especially the fradarge trees.

Finally, trees fragment the data. As the recursive splittiraceeds each
daughter region contains fewer observations than its pafdrsome point re-
gions will contain too few observations and cannot be furtipdit. Paths from
the root to the terminal nodes tend to contain on averagatvely small frac-
tion of all of the predictor variables that thereby define thgion boundaries.
Thus, each prediction involves only a relatively small nunmddgoredictor vari-
ables. If the target function is influenced by only a small nandg (potentially
different) variables in different local regions of the piedr variable space,
then trees can produce accurate results. But, if the tangetibn depends on
a substantial fraction of the predictors everywhere in ffacs, trees will have
problems.

4. Recent Advances

Both kernel methods and decision trees have been aroundifiog ime.
Trees have seen active use, especially in data mining apipls. The clas-
sic kernel approach has seen somewhat less use. As disalszes] both
methodologies have (different) advantages and disadyestaRecently, these
two technologies have been completely revitalized in diffie ways by address-
ing different aspects of their corresponding weaknessgspat vector ma-
chines (Vapnik 1996) address the computational problenkeifel methods,
and boosting (Freund and Shapire 1996; Friedman 2002) imptiogescuracy
of decision trees.

41 Support Vector Machines (SVM)

A principal goal of the SVM approach is to fix the computatiorralgem
of predicting with kernels (4). As discussed in Section 2, idep to make a
kernel prediction a pass over the entire training data lmassguired. For large
data sets this can be too time consuming and it requiresttbatritire data base
be stored in random access memory.

Support vector machines were introduced for the two—classiflcation
problem. Here the response variable realizes only two gafakass labels)
which can be respectively encoded as

(9)

| +1 label=class 1
| —1 label=class2’

The average or expected valuefiven a set of joint predictor variable values
X is

Predictive (Machine) Learning 183

Ely|x]=2-Pr(y=+1|x) — 1. (10)

Prediction error rate is minimized by predictingsathe class with the
highest probability, so that the optimal prediction is givsy

Y (x) = sign(E [y | x]).

From (4) the kernel estimate of (10) based on the training (Rt given by

N
Ely|x]=F Zyz (x,%i) /Y K(xx) (11)
=1

and, assuming a strictly non negative kerhglx, x;), the prediction estimate
is

g(x) = szgn([y]x]) = sign <Z yi K(x,%;))) (12)

Note that ignoring the denominator in (11) to obtain (12) oges information
concerning the absolute value Bf(y = +1|x); only its estimated sign is
retained for classification.

A support vector machine is a weighted kernel classifier

= sign <Z ;i K(x,x;) . (13)

Each training observatiofy;, x;) has an associated coefficientadditionally
used with the kernek (x, x;) to evaluate the weighted sum (13) comprising the
kernel estimatg(x). The goal is to choose a set of coefficient val{ies}{ so
that manyw; = 0 while still maintaining prediction accuracy. The observat
associated with non zero valued coefficiefts | ; # 0} are called “support
vectors”. Clearly from (13) only the support vectors areuieed to do predic-
tion. If the number of support vectors is a small fractionh# total number of
observations computation required for prediction is thgmauch reduced.

4.1.1 Kernel Trick

In order to see how to accomplish this goal consider a difftefer-
mulation. Suppose that instead of using the original medswagablesx =
(x1,- - -,x,) as the basis for prediction, one constructs a very large ruwib
(nonlinear) functions of them

{21 = hi(x) 1 (14)

184 J.H. Friedman

for use in prediction. Here eadh.(x) is a different function (transformation)
of x. For any givenx, z = {2} represents a point in &/—dimensional
space wheré/ >> dim(x) = n. Thus, the number of “variables” used for
classification is dramatically expanded. The procedure oactstsimpldinear
classifier inz—space

M M
i(z) = sign (ﬁo +) B Zk) = sign (ﬁo +) Br (X)> -
k=1 k=1
This is a highlynon-linear classifier irk—space owing to the nonlinearity of
the derived transformationg:, (x) }3.
An important ingredient for calculating such a linear cifissis the inner
product between the points representing two observatiang j

M
7 7j = Z ZikZjk (15)
k=1

M
= th (xi) I (%)
k=1

= H(Xi,Xj).

This (highly nonlinear) function of the—variables H (x;, x;), defines the sim-
ple bilinear inner produotisz in z—space.

Suppose for example, the derived variables (14) were takee il d—
degree polynomials in the original predictor variabjes}?. Thus, the number
of derived variables i9/ = (n + 1)¢, which is the order of computation for
obtainingz! z; directly from thez variables. However, using

z; z; = H(x;, x;) = (x] x; + 1) (16)

reduces the computation to ordey the much smaller number of originally
measured variables. Thus, if for any particular set of ddrivariables (14),
the functionH (x;,x;) that defines the corresponding inner produgits; in
terms of the originak—variables can be found, computation can be considerably
reduced.

As an example of a very simple linear classifiezifspace, consider one
based on nearest—-means.

j(z) = sign(||z —z_||> — ||z — 24 [|*). 7)
Herez_. are the respective means of the- +1 andy = —1 observations

1
Zi = Ni Z z;.
+ yi=%1

Predictive (Machine) Learning 185

For simplicity, letN, = N_ = N/2. Choosing the midpoint betwe&n and
Z_ as the coordinate system origin, the decision rule (17) esexpressed as

§(2) = sign(2” (2. —) (18)

= sign ZTZZ'— g szi

N
= sign (Z yiszi>
=1
N
= sign (Z yiH(X,Xz‘)> :
i=1

Comparing this (18) with (12) (13), one sees that ordinamné&krule {o; =

1}V in x—space is the nearest-means classifier intispace of derived vari-
ables (14) whose inner product is given by the kernel funetfaz; = K (x;, x;).
Therefore to construct an (implicit) nearest means classifierspace, all com-
putations can be done w-space because they only depend on evaluating in-
ner products. The explicit transformations (14) need neeeddfined or even
known.

4.1.2 Optimal Separating Hyperplane

Nearest—means is an especially simple linear classifierspace and it
leads to no compressiodn; = 1}) in (13). A support vector machine uses
a more “realistic” linear classifier in—space, that can also be computed using
only inner products, for which often many of the coefficienévé the value
zero (; = 0). This classifier is the “optimal” separating hyperplane (OSH)

We consider first the case in which the observations reprieggthte re-
spective two classes are linearly separable-ispace. This is often the case
since the dimensioM (14) of that (implicitly defined) space is very large. In
this case the OSH is the unique hyperplane that separateslasses while
maximizing the distance to the closest points in each cl&@sly this set of
closest points equidistant to the OSH are required to defin€hese closest
points are called the support points (vectors). Their nuncharrange from a
minimum of two to a maximum of the training sample si¥e The “margin”
is defined to be the distance of support points from OSH. ZHsepace linear
classifier is given by

M
j(z) = sign (ﬁé +> ﬁ:zk> (19)

k=1

186 J.H. Friedman

where (35, 8* = {B;}}) define the OSH. Their values can be determined
using standard quadratic programming techniques.

An OSH can also be defined for the case when the two classes are not
separable iz—space by allowing some points to be on wrong side of thesiscla
margin. The amount by which they are allowed to do so is a regakon
(smoothing) parameter of the procedure. In both the sefsaalol non separa-
ble cases the solution parameter val(gs 5*) (19) are defined by points close
to boundary between the classes. The solutiofffatan be expressed as

N
p* = Z a;ﬁ Yi Z;
i=1

with o # 0 only for points on, or on the wrong side of, their class margin
These are the support vectors. The SVM classifier is thereby

N
j(z) = sign (BS +> aly szZ)
=1
= sign | B85+ Y af 4 K(x,%;)
o #0
This is a weighted kernel classifier involving only supporttees. Also

(not shown here), the quadratic program used to solve foD®id involves the
data only through the inner produetz; = K (x;,x;). Thus, one only needs
to specify the kernel function to implicitly defire-variables (kernel trick).

Besides the polynomial kernel (16), other popular kernsésduwith sup-
port vector machines are the “radial basis function” kernel

K(x,x/) :exp(—HX—X’H2/202), (20)
and the “neural network” kernel
K(x,x') = tanh(ax?x’' +b). (21)

Note that both of these kernels (20) (21) involve additidnaing parameters,
and produce infinite dimensional derived variable (14) spéte = o).

4.1.3 Penalized Learning Formulation

The support vector machine was motivated above by the optays-
rating hyperplane in the high dimensional space of the ddrixariables (14).
There is another equivalent formulation in that space thavshhat the SVM

Predictive (Machine) Learning 187

procedure is related to other well known statistically loasethods. The para-
meters of the OSH (19) are the solution to

N
(65,57) = argmin }_[1 = pi(Bo+ 6" z)ls + A- 11617 (22)
P =1

Here the expressiom| ;. represents the “positive part” of its argument; that is,
[n]+ = max(0,n). The “regularization” parametex is related to the SVM
smoothing parameter mentioned above. This expression €p2@sents a pe-
nalized learning problem where the goal is to minimized tmpieical risk on
the training data using as a loss criterion

L(y7F(Z)) = [1 - yF(Z>]+7 (23)

where
F(z) = o+ 0Tz,

subject to an increasing penalty for larger values of
1817 =6 (24)
j=1

This penalty (24) is well known and often used to regularizgistical proce-
dures, for example linear least squares regression leadiridge—regression
(Hoerl and Kannard 1970)

N
(G, 8) = argmin > [y — (B + 0"z +A- 1BIF. (25)
PP =1

The “hinge” loss criterion (23) is not familiar in statisticlowever, it
is closely related to one that is well known in that field, namebnditional
negative log—likelihood associated with logistic regress

L(y, F(z)) = —log[1 + e ¥F'(®)]. (26)

In fact, one can view the SVM hinge loss as a piecewise—lingaircximation
to (26). Unregularized logistic regression is one of the npagpular methods
in statistics for treating binary response outcomes (9).sThusupport vector
machine can be viewed as an approximatioregularizedlogistic regression
(in z—space) using the ridge—regression penalty (24).

This penalized learning formulation forms the basis for edierg SVMs
to the regression setting where the response varigbtssumes numeric values

188 J.H. Friedman

y € R!, rather than binary values (9). One simply replaces the ddgsrion
(23) in (22) with

L(y, F(z)) = (ly = F(z)| =€)+ (27)

This is called the é&—insensitive” loss and can be viewed as a piecewise—linear
approximation to the Huber 1964 loss

ly—F@)/2 |y F(z)| <
L(y, F(z)) = { clly— F3) —e/2) Iy — Fla)| > e (29)

often used for robust regression in statistics. This los$ & compromise
between squared—error loss (25) and absolute—deviasst (g, F'(z)) = |y —
F(z)|. The value of the “transition” point differentiates the errors that are
treated as “outliers” being subject to absolute—deviatoms, form the other
(smaller) errors that are subject to squared—error loss.

4.1.4 SVM Properties

Support vector machines inherit most of the advantages aianyker-
nel methods discussed in Section 2. In addition, they cancowse the com-
putation problems associated with prediction, since ohé gupport vectors
(a; # 0in (13)) are required for making predictions. If the numbé&sop-
port vectors is much smaller that than the total sample Aize&omputation
is correspondingly reduced. This will tend to be the case vthere is small
overlap between the respective distributions of the twesga in the space of
the original predictor variables (small Bayes error rate).

The computational savings in prediction are bought by dremmatrease
in computation required for training. Ordinary kernel nath (4) require no
training; the data set is the model. The quadratic progranolidaining the
optimal separating hyperplane (solving (22)) requiresataition proportional
to the squareof the sample size?), multiplied by the number of resulting
support vectors. There has been much research on fast higerior training
SVMs, extending computational feasibility to data sets & &V < 30, 000 or
so. However, they are still not feasible for really largeadsgstsV > 100, 000.

SVMs share some of the disadvantages of ordinary kernel etAdey
are a black—box procedure with little interpretive valués@ as with all kernel
methods, performance can be very sensitive to kernel (distaunction) choice
(5). For good performance the kernel needs to be matchea tortperties of
the target functiorf™ (x) (2), which are often unknown. However, when there
is a known “natural” distance for the problem, SVMs represemy powerful
learning machines.

Predictive (Machine) Learning 189

4.2 Boosted Trees

Boosting decision trees was first proposed by Freund and SH{&p®pé).
The basic idea is rather than using just a single tree for gliedi a linear
combination of (many) trees

M
F(x) =Y amTm(x) (29)
m=1

is used instead. Here eath,(x) is a decision tree of the type discussed in
Section 3 ands,, is its coefficient in the linear combination. This approach
maintains the (statistical) advantages of trees, whilerofframatically increas-
ing accuracy over that of a single tree.

4.2.1 Training

The recursive partitioning technique for constructing ajkdrtree on
the training data was discussed in Section 3. Algorithm 1ritese a forward
stagewise method for constructing a prediction machinedas a linear com-
bination of M trees.

Algorithm 1

Forward stagewise boosting
Fo(X) =0
Form =1to M do:

(am, Trm(x)) = arg ming 7(x)

Sy Lyi, Foa (i) + aT (x:))

Fr(X) =F—1 (%) +amTin(x)
EndFor
T F(x) = Far(x) = YXpy anTin(x)

The first line initializes the predicting function to everywbdave the
value zero. Lines 2 and 6 control th¢ iterations of the operations associ-
ated with lines 3-5. At each iteration there is a current predicting function
F—1(x). At the first iteration this is the initial functiofip(x) = 0, whereas
form > 1itis the linear combination of the — 1 trees induced at the previous
iterations. Lines 3 and 4 construct that tfBg(x), and find the corresponding
coefficienta,,, that minimize the estimated prediction risk (1) on thentirag)
data whenu,,, T, (x) is added to the current linear combinatibp _; (x). This
is then added to the current approximatibp_;(x) on line 5, producing a
current predicting functiod,, (x) for the next {n 4 1)st iteration.

At the first step,a; T (x) is just the standard tree build on the data as
described in Section 3, since the current functiodij$x) = 0. At the next

O Tl W N

190 J.H. Friedman

step, the estimated optimal trég(x) is found to add to it with coefficient,,
producing the functiorF,(x) =a171(x) + a2T>(x). This process is continued
for M steps, producing a predicting function consisting of adim@mbination
of M trees (line 7).

The potentially difficult part of the algorithm is construgithe optimal
tree to add at each step. This will depend on the chosen losduord (y, F').
For squared—error loss

the procedure is especially straight forward, since

L(Q? Fm—1+ aT):(y_ Fm—l - aT>2
= (n — aT)?.

Herer,, = y— F,,_1 isjust the error (“residual”) from the current mode}, ,
at themth iteration. Thus each successive tree is built in the standay
to best predict therrors produced by the linear combination of the previous
trees. This basic idea can be extended to produce boostiagthigs for any
differentiable loss criterioiL(y, F') (Friedman 2002).

As originally proposed the standard tree constructionrélyo was treated
as a primitive in the boosting algorithm, inserted in linean8l 4 to produced a
tree that best predicts the current errfrs,, = y; — Fm_l(xi)}f’. In particu-
lar, an optimal tree size was estimated at each step in thdast@tree building
manner. This basically assumes that each tree will the lasirotine sequence.
Since boosting often involves hundreds of trees, this assamfs far from
true and as a result accuracy suffers. A better strategg turthto be (Friedman
2002) to use a constant tree sizerggions) at each iteration, where the value
of J is taken to be small, but not too small. Typically< J < 10 works well in
the context of boosting, with performance being fairly imséve to particular
choices.

4.2.2 Regularization

Even if one restricts the size of the trees entering into a tedosee
model it is still possible to fit the training data arbitrariyell, reducing train-
ing error to zero, with a linear combination of enough trééswever, as is well
known in statistics, this is seldom the best thing to do. rgttihe training data
too well can increase prediction risk on future predictiomhkis is a phenom-
enon called “over—fitting”. Since each tree tries to best fit there associated
with the linear combination of previous trees, the traingmgr monotonically
decreases as more trees are included. This is, however,enoasie fofuture
prediction error on data not used for training.

Predictive (Machine) Learning 191

Typically at the beginning, future prediction error deceswith increas-
ing number of trees\/ until at some pointM* a minimum is reached. For
M > M*, future error tends to (more or less) monotonically inceeas more
trees are added. Thus there is an optimal nunmibénf trees to include in the
linear combination. This number will depend on the probleang@t function
(2), training sample siz&/, and signal to noise ratio). Thus, in any given situa-
tion, the value of\/* is unknown and must be estimated from the training data
itself. This is most easily accomplished by the “early stogpstrategy used in
neural network training. The training data is randomly piaried into learning
and test samples. The boosting is performed using only tlzeinl#be learning
sample. As iterations proceed and trees are added, pmdritk as estimated
on the test sample is monitored. At that point where a defirpteand trend is
detected iterations stop ardd* is estimated as the value 8f producing the
smallest prediction risk on the test sample.

Inhibiting the ability of a learning machine to fit the traigidata so as to
increase future performance is called a “method—of—regaléon”. It can be
motivated from a frequentist perspective in terms of thesbvariance trade—
off” (Geman, Bienenstock, and Doursat 1992) or by the Baye#sitroduction
of a prior distribution over the space of solution functiohseither case, con-
trolling the number of trees is not the only way to regularid@other method
commonly used in statistics is “shrinkage”. In the conteédb@osting, shrink-
age can be accomplished by replacing line 5 in Algorithm 1 by

Fin(x) = Fro1(x) + (v - am) Ty (%) (30)

Here the contribution to the linear combination of the eatsd best tree to
add at each step is reduced by a factor v < 1. This “shrinkage” factor
or “learning rate” parameter controls the rate at which agdrees reduces
prediction risk on the learning sample; smaller values pced slower rate so
that more trees are required to fit the learning data to the segree.

Shrinkage (30) was introduced in Friedman (2002) and showriremp
cally to dramatically improve the performance of all bongtinethods. Smaller
learning rates were seen to produce more improvement, vdiminishing re-
turn forv < 0.1, provided that the estimated optimal number of trééyv)
for that value ot is used. This number increases with decreasing learning rate
so that the price paid for better performance is increasatpotation.

4.2.3 Penalized Learning Formulation

The introduction of shrinkage (30) in boosting was origipglistified
purely on empirical evidence and the reason for its succassawmystery. Re-
cently, this mystery has been solved (Hastie, Tibshirard,Friedman 2001;

192 J.H. Friedman

Efron, Hastie, Johnstone, and Tibshirani 2002). Consideaming machine
consisting of a linear combination afl possible {—region) trees:

= amTm(x) (31)

where

{am}—argmmzfz(yz,zam x;)) + A+ P({an}). (32)

This is a penalized (regularized) linear regression, basea chosen loss cri-
terion L, of the response valugg; }3¥ on the predictors (treeg)},,(x;)} ;.
The first term in (32) is the prediction risk on the training data the second
is a penalty on the values of the coefficiefits, }. This penalty is required to
regularize the solution because the number of all posgibtegion trees is in-
finite. The value of the “regularization” parametecontrols the strength of the
penalty. Its value is chosen to minimize an estimate of fupnediction risk,
for example based on a left out test sample.

A commonly used penalty for regularization in statisticghe “ridge”

penalty
P({an}) = Z a, (33)

used in ridge—regression (25) and support vector mach2®s This encour-
ages small coefficient absolute values by penalizing therorm of the coef-
ficient vector. Another penalty becoming increasingly papis the “lasso”
(Tibshirani 1996)
P({am}) =) _lam|. (34)

This also encourages small coefficient absolute values, bpehwglizing the
[1—norm. Both (33) and (34) increasingly penalize larger agerabsolute co-
efficient values. They differ in how they react to dispersiovanation of the
absolute coefficient values. The ridge penalty discouraggeediion by penal-
izing variation in absolute values. It thus tends to prodsmetions in which
coefficients tend to have equal absolute values and none kathalue zero.
The lasso (34) is indifferent to dispersion and tends to prediolutions with
a much larger variation in the absolute values of the coeffisiavith many of
them set to zero. The best penalty will depend on the (unknampulation)
optimal coefficient values. If these have more or less equadlate values the
ridge penalty (33) will produce better performance. On ttieeohand, if their
absolute values are highly diverse, especially with a fegdaalues and many
small values, the lasso will provide higher accuracy.

As discussed in Hastie, Tibshirani, and Friedman (2001) eyutausly
derived in Efron et al. (2002), there is a connection betwemwsting (Al-
gorithm 1) with shrinkage (30) and penalized linear regogsen all possible

Predictive (Machine) Learning 193

trees (31) (32) using the lasso penalty (34). They produgesmnilar solutions
as the shrinkage parameter becomes arbitrarily sma#f 0. The number of
trees)M is inversely related to the penalty strength paramgtenore boosted
trees corresponds to smaller values\d@fess regularization). Using early stop-
ping to estimate the optimal numb&f* is equivalent to estimating the optimal
value of the penalty strength paramekerTherefore, one can view the intro-
duction of shrinkage (30) with a small learning rate< 0.1 as approximating
a learning machine based on all possihleregion) trees with a lasso penalty
for regularization. The lasso is especially appropriateéhia tontext because
among all possible trees only a small number will likely eg@nt very good
predictors with population optimal absolute coefficientna substantially dif-
ferent from zero. As noted above, this is an especially badon for the
ridge penalty (33), but ideal for the lasso (34).

4.2.4 Boosted Tree Properties

Boosted trees maintain almost all of the advantages ofesingé model-
ing described in Section 3.1 while often dramatically insiag their accuracy.
One of the properties of single tree models leading to inaaxuis the coarse
piecewise constant nature of the resulting approximati®imce boosted tree
machines are linear combinations of individual trees, freypluce a superposi-
tion of piecewise constant approximations. These are ofseoalso piecewise
constant, but with many more pieces. The corresponding lisemus jumps
are very much smaller and they are able to more accuratetpzippate smooth
target functions.

Boosting also dramatically reduces the instability assted with single
tree models. First only small trees (Section 4.2.1) are uséchvane inherently
more stable that the generally larger trees associatedinigie tree approxima-
tions. However, the big increase in stability results frdva &veraging process
associated with using the linear combination of a large remolbtrees. Aver-
aging reduces variance; that is why it plays such a fundaahesie in statistical
estimation.

Finally, boosting mitigates the fragmentation problem plag single
tree models. Again only small trees are used which fragniendata to a much
lesser extent than large trees. Each boosting iterationtheesntire data set
to build a small tree. Each respective tree can (if dictatethbydata) involve
different sets of predictor variables. Thus, each prediatien be influenced by
a large number of predictor variables associated with ati@trees involved in
the prediction if that is estimated to produce more accuesalts.

The computation associated with boosting trees roughlyescals
nN log N with the number of predictor variablesand training sample siz¥.

194 J.H. Friedman

Thus, it can be applied to fairly large problems. For exampteblems with
n « 102-10% and N« 10°-10° are routinely feasible.

The one advantage of single decision trees not inherited bgting is
interpretability. It is not possible to inspect the veryg@mnumber of individual
tree components in order to discern the relationships letvilee responsg
and the predictorg. Thus, like support vector machines, boosted tree machines
produce black—box models. Techniques for interpretingstembtrees as well
as other black—box models are described in Friedman (2002).

4.3 Connections

The preceding section has reviewed two of the most impor@varaes
in machine learning in the recent past: support vector nmashand boosted
decision trees. Although motivated from very differentgperctives, these two
approaches share fundamental properties that may acamuhieir respective
success. These similarities are most readily apparent fnemespective pe-
nalized learning formulations (Section 4.1.3 and Sectior84. Both build lin-
ear models in a very high dimensional space of derived vasabach of which
is a highly nonlinear function of the original predictor iablesx. For support
vector machines these derived variables (14) are implidigfined through the
chosen kerneK (x, x’) defining their inner product (15). With boosted trees
these derived variables are all possiblefegion) decision trees (31) (32).

The coefficients defining the respective linear models in thigeldspace
for both methods are solutions to a penalized learning prol§R2) (32) involv-
ing a loss criteriorL(y, F') and a penalty on the coefficien®{a,, }). Support
vector machines usk(y, F') = (1 — y F')4 for classificationy € {—1,1}, and
(27) for regressioy € R!. Boosting can be used with any (differentiable) loss
criterion L(y, F') (Friedman 2002). The respective penaltigqa,, }) are (24)
for SVMs and (34) with boosting. Additionally, both methods/e a computa-
tional trick that allows all (implicit) calculations reqed to solve the learning
problem in the very high (usually infinite) dimensional spatehe derived
variablesz to be performed in the space of the original variablegor support
vector machines this is the kernel trick (Section 4.1.1), i@l with boosting
it is forward stagewise tree building (Algorithm 1) with gtikage (30).

The two approaches do have some basic differences. Thesedrihal
particular derived variables defining the linear model in hiigh dimensional
space, and the penal®({a,,}) on the corresponding coefficients. The per-
formance of any linear learning machine based on derivedblas (14) will
depend on the detailed nature of those variables. That igrelift transfor-
mations{hx(x)} will produce different learners as functions of the oridina
variablesx, and for any given problem some will be better than others. The

Predictive (Machine) Learning 195

prediction accuracy achieved by a particular set of transédions will depend
on the (unknown) target functiof*(x) (2). With support vector machines the
transformations are implicitly defined through the chosendédfunction. Thus
the problem of choosing transformations becomes, as wittkamel method,
one of choosing a particular kernel functiéf(x, x’) (“kernel customizing”).

Although motivated here for use with decision trees, bogstian in fact
be implemented using any specified “base learhéx’ p). This is a function of
the predictor variables characterized by a set of parametprs: {p; p2,- - -}.

A particular set of joint parameter valupsndexes a particular function (trans-
formation) ofx, and the set of all functions induced over all possible jparia-
meter values define the derived variables of the linear pliedimachine in the
transformed space. If all of the parameters assume valuesfioite discrete
set this derived space will be finite dimensional, otherwisell have infinite
dimension. When the base learner is a decision tree the pteerepresent
the identities of the predictor variables used for splitithe split points, and
the response values assigned to the induced regions. Thartbstagewise
approach can be used with any base learner by simply subiititi for the
decision tre€l'(x) —h(x; p) in lines 3-5 of Algorithm 1. Thus boosting pro-
vides explicit control on the choice of transformationshe high dimensional
space. So far boosting has seen greatest success with decesdase learn-
ers, especially in data mining applications, owing to tlaeivantages outlined
in Section 3.1. However, boosting other base learners canderpotentially
attractive alternatives in some situations.

Another difference between SVMs and boosting is the natutiesofegu-
larizing penaltyP ({a., }) that they implicitly employ. Support vector machines
use the “ridge” penalty (24). The effect of this penalty istoisk the absolute
values of the coefficient§3,,} from that of the unpenalized solution = 0
(22), while discouraging dispersion among those absolateeg. That is, it
prefers solutions in which the derived variables (14) allehaimilar influence
on the resulting linear model. Boosting implicitly uses tlzsso” penalty (34).
This also shrinks the coefficient absolute values, but it igfer@nt to their dis-
persion. It tends to produce solutions with relatively fangke absolute valued
coefficients and many with zero value.

If a very large number of the derived variables in the highatisional
space are all highly relevant for prediction then the ridgeaity used by SVMs
will provide good results. This will be the case if the chosemlel K (x, x')
is well matched to the unknown target functiéii(x) (2). Kernels not well
matched to the target function will (implicitly) produceatrsformations (14)
many of which have little or no relevance to prediction. Thenbgenizing ef-
fect of the ridge penalty is to inflate estimates of their ratee while deflating
that of the truly relevant ones, thereby reducing predictiocuracy. Thus, the

196 J.H. Friedman

sharp sensitivity of SVMs on choice of a particular kernel bartraced to the
implicit use of the ridge penalty (24).

By implicitly employing the lasso penalty (34), boostingiaipates that
only a small number of its derived variables are likely to lghly relevant to
prediction. The regularization effect of this penalty tetalproduce large coef-
ficient absolute values for those derived variables thatappebe relevant and
small (mostly zero) values for the others. This can sacrificamcy if the cho-
sen base learner happens to provide an especially appsoppace of derived
variables in which a large number turn out to be highly retévélowever, this
approach provides considerable robustness against @ssptimal choices for
the base learner and thus the space of derived variables.

5. Conclusion

A choice between support vector machines and boosting dspen
one’s a priori knowledge concerning the problem at handhat knowledge
is sufficient to lead to the construction of an especiallyaife kernel func-
tion K (x,x’) then an SVM (or perhaps other kernel method) would be most
appropriate. If that knowledge can suggest an especidgtdfe base learner
h(x; p) then boosting would likely produce superior results. Asedabove,
boosting tends to be more robust to misspecification. Thesddalmiques
represent additional tools to be considered along withratiechine learning
methods. The best tool for any particular application depandthe detailed
nature of that problem. As with any endeavor one must matetidbl to the
problem. If little is known about which technique might besbi any given
application, several can be tried and effectiveness judgeiddependent data
not used to construct the respective learning machines wotsideration.

References

BELLMAN, R.E. (1961),Adaptive Control ProcesseNew Jersey: Princeton University Press.

BREIMAN, L. (1996), “Bagging Predictors’Machine Learning 26123-140.

BREIMAN, L. (2001), Random Forests, Random Featyrdgchnical Report, University of
California, Berkeley.

BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R., and STONE, C. (198%lassification and
Regression Tree8elmont CA: Wadsworth.

EFRON, B., HASTIE, T., JOHNSTONE, I., and TIBSHIRANI, R. @4), “Least Angle Re-
gression” Annals of Statistics 32107-499.

FREUND, Y., and SCHAPIRE, R. (1996), “Experiments with a New BomsAlgorithm”. In
Machine Learning: Proceedings of the Thirteenth International Comfezel 48—156.

FRIEDMAN, J.H. (2002), “Greedy Function Approximation: A Gradi&@oosting Machine”,
Annals of Statistics 29189-1232.

GEMAN, S., BIENENSTOCK, E., and DOURSAT, R. (1992), “Neufdétworks and the
Bias/variance DilemmaNeural Computation 41-58.

Predictive (Machine) Learning 197

HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J.H. (2001)The Elements of Statistical
Learning New York: Springer—Verlag.

HOERL, A.E. and KENNARD, R. (1970), “Ridge Regression: Biasetr&ation for Nonorthog-
onal Problems”Technometrics 1,55-67.

NADARATA, E.A. (1964), “On Estimating RegressionTheory of Probability and its Applica-
tions 10 186-190.

QUINLAN, R. (1992),C4.5: Programs for Machine Learnin@an Mateo: Morgan Kaufmann.

TIBSHIRANI, R. (1996), “Regression Shrinkage and Selection vialth&so”,Journal of the
Royal Statistical Society 5267-288.

VAPNIK, V.N. (1995), The Nature of Statistical Learning Theofyew York: Springer.

WAHBA, G. (1990),Spline Models for Observational DatBhiladelphia: SIAM.

WATSON, G.S. (1964), “Smooth Regression AnalysiS§nkhya: The Indian Journal of Sta-
tistics A, 26 359-372.

