
Journal of Classification 23:175-197 (2006)
DOI: 10.1007/s00357-006-0012-4

SPECIAL INVITED ARTICLE

Recent Advances in Predictive (Machine) Learning

Jerome H. Friedman

Stanford University

Abstract: Prediction involves estimating the unknown value of an attribute of a system
under study given the values of other measured attributes. In prediction(machine) learn-
ing the prediction rule is derived from data consisting of previously solvedcases. Most
methods for predictive learning were originated many years ago at the dawn of the com-
puter age. Recently two new techniques have emerged that have revitalized the field.
These are support vector machines and boosted decision trees. This paper provides an
introduction to these two new methods tracing their respective ancestral roots to standard
kernel methods and ordinary decision trees.

Keywords: Machine learning; Boosting; Support vector machine; Kernel methods; De-
cision trees.

This article is based on a Keynote Address presented at the 68th Annual Meeting of the
Psychometric Society, Cagliari (Sardinia), Italy, July 7-10, 2003. Helpful discussions with Trevor
Hastie are gratefully acknowledged. This work was partially supported bythe Department of En-
ergy under contract DE-AC03-76SF00515, and by grant DMS–97–64431 of the National Science
Foundation.

Author’s Address: Department of Statistics and Stanford Linear Accelerator Center, Stan-
ford, CA 94305 USA, e-mail: jhf@stanford.edu

176 J.H. Friedman

1. Introduction

The predictive or machine learning problem is easy to state ifdifficult to
solve in general. Given a set of measured values of attributes/characteristics/
properties on a object (observation)x = (x1, x2, · · ·, xn) (often called “vari-
ables”) the goal is to predict (estimate) the unknown value of another attribute
y. The quantityy is called the “output” or “response” variable, andx =
{x1, · · ·, xn} are referred to as the “input” or “predictor” variables. The predic-
tion takes the form of function

ŷ = F (x1, x2, · · ·, xn) = F (x)

that maps a pointx in the space of all joint values of the predictor variables,
to a pointŷ in the space of response values. The goal is to produce a “good”
predictiveF (x). This requires a definition for the quality, or lack of quality,
of any particularF (x). The most commonly used measure of lack of quality
is prediction “risk”. One defines a “loss” criterion that reflects the cost of mis-
takes:L(y, ŷ) is the loss or cost of predicting a valueŷ for the response when
its true value isy. The prediction risk is defined as the average loss over all
predictions

R(F) = EyxL(y, F (x)) (1)

where the average (expected value) is over the joint (population) distribution of
all of the variables(y,x) which is represented by a probability density function
p(y,x). Thus, the goal is to find a mapping functionF (x) with low predictive
risk.

Given a functionf of elementsw in some set, the choice ofw that gives
the smallest value off(w) is calledarg minw f (w). This definition applies to
all types of sets including numbers, vectors, colors, or functions. In terms of
this notation the optimal predictor with lowest predictiverisk (called the “target
function”) is given by

F ∗(x) = arg min
F (x)

R(F (x)). (2)

Given joint values for the input variablesx, the optimal prediction for the output
variable isŷ = F ∗(x).

When the response takes on numeric valuesy ∈ R1, the learning problem
is called “regression” and commonly used loss functions include absolute error
L(y, F) = |y − F |, and even more commonly squared–errorL(y, F) = (y −
F)2 because algorithms for minimization of the corresponding risk tend to be
much simpler. In the “classification” problem the response takes on a discrete
set ofK unorderable categorical values (names or class labels)y, F ∈ {c1, · ·
·, cK} and the loss criterionLy,F becomes a discreteK ×K matrix.

Predictive (Machine) Learning 177

There are a variety of ways one can go about trying to find a good predict-
ing functionF (x). One might seek the opinions of domain experts, formally
codified in the “expert systems” approach of artificial intelligence. In predictive
or machine learning one uses data. A “training” data base

D = {yi, xi1, xi2, · · ·, xin}
N
1 = {yi,xi}

N
1 (3)

of N previously solved cases is presumed to exist for which the values of all
variables (response and predictors) have been jointly measured. A “learning”
procedure is applied to these data in order to extract (estimate) a good predict-
ing functionF (x). There are a great many commonly used learning procedures.
These include linear/logistic regression, neural networks, kernel methods, deci-
sion trees, multivariate splines (MARS), etc. For descriptions of a large number
of such learning procedures see Hastie, Tibshirani and Friedman (2001).

Most machine learning procedures have been around for a longtime and
most research in the field has concentrated on producing refinements to these
long standing methods. However, in the past several years there has been a
revolution in the field inspired by the introduction of two newapproaches: the
extension of kernel methods to support vector machines (Vapnik 1996), and the
extension of decision trees by boosting (Freund and Shapire 1996; Friedman
2001). It is the purpose of this paper to provide an introduction to these new
developments. First the classic kernel and decision tree methods are introduced.
Then the extension of kernels to support vector machines is described, followed
by a description of applying boosting to extend decision tree methods. Finally,
similarities and differences between these two approacheswill be discussed.

Although arguably the most influential recent developments,support vec-
tor machines and boosting are not the only important advances in machine
learning in the past several years. Owing to space limitations these are the
ones discussed here. There have been other important developments that have
considerably advanced the field as well. These include (but arenot limited to)
the bagging and random forest techniques of Breiman (1996, 2001) that are
somewhat related to boosting, and the reproducing kernel Hilbert space meth-
ods of Wahba (1990) that share similarities with support vector machines. It is
hoped that this article will inspire the reader to investigate these as well as other
machine learning procedures.

2. Kernel Methods

Kernel methods for predictive learning were introduced by Nadaraya
(1964) and Watson (1964). Given the training data (3), the response estimate
ŷ for a set of joint valuesx is taken to be a weighted average of the training
responses{yi}

N
1 :

178 J.H. Friedman

ŷ = FN (x) =
N
∑

i=1

yi K(x,xi)

/

N
∑

i=1

K(x,xi). (4)

The weightK(x,xi) assigned to each response valueyi depends on its location
xi in the predictor variable space and the locationx where the prediction is
to be made. The functionK(x,x′) defining the respective weights is called the
“kernel function”, and it defines the kernel method. Often theform of the kernel
function is taken to be

K(x,x′) = g(d(x,x′)/σ) (5)

whered(x,x′) is a defined “distance” betweenx andx′, σ is a scale (“smooth-
ing”) parameter, andg(z) is a (usually monotone) decreasing function with
increasingz; often g(z) = exp(−z2/2). Using this kernel (5), the estimate
ŷ (4) is a weighted average of{yi}

N
1 , with more weight given to observations

i for which d(x,xi) is small. The value ofσ defines “small”. The distance
functiond(x,x′) must be specified for each particular application.

Kernel methods have several advantages that made make them poten-
tially attractive. They represent a universal approximator; as the training sam-
ple sizeN becomes arbitrarily large,N → ∞, the kernel estimate (4) (5) ap-
proaches the optimal predicting target function (2),FN (x)→ F ∗(x), provided
the value chosen for the scale parameterσ as a function ofN approaches zero,
σ(N)→ 0, at a slower rate than1/N . This result holds for almost any distance
functiond(x,x′); only very mild restrictions (such as convexity) are required.
Another advantage of kernel methods is that no training is required to build a
model; the training data setis the model. Also, the procedure is conceptually
quite simple and easily explained.

Kernel methods suffer from some disadvantages that have kept them from
becoming highly used in practice, especially in data miningapplications. Since
there is no model, they provide no easily understood model summary. Thus,
they cannot be easily interpreted. There is no way to discern how the function
FN (x) (4) depends on the respective predictor variablesx. Kernel methods
produce a “black–box” prediction machine. In order to make each prediction,
the kernel method needs to examine the entire data base. This requires enough
random access memory to store the entire data set, and the computation required
to make each prediction is proportional to the training sample sizeN . For large
data sets this is much slower than that for competing methods.

Perhaps the most serious limitation of kernel methods is statistical. For
anyfinite N , performance (prediction accuracy) dependscritically on the cho-
sen distance functiond(x,x′), especially for regressiony ∈ R1. When there
are more than a few predictor variables, even the largest data sets produce a
very sparse sampling in the correspondingn–dimensional predictor variable

Predictive (Machine) Learning 179

space. This is a consequence of the so called “curse–of–dimensionality” (Bell-
man 1961). In order for kernel methods to perform well, the distance function
must be carefully matched to the (unknown) target function (2), and the proce-
dure is not very robust to mismatches.

As an example, consider the often used Euclidean distance function

d(x,x′) =





n
∑

j=1

(xj − x′
j)

2





1/2

. (6)

If the target functionF ∗(x) dominately depends on only a small subset of the
predictor variables, then performance will be poor becausethe kernel function
(5) (6) depends on all of the predictors with equal strength.If one happened to
know whichvariables were the important ones, an appropriate kernel could be
constructed. However, this knowledge is often not available. Such “kernel cus-
tomizing” is a requirement with kernel methods, but it is difficult to do without
considerable a priori knowledge concerning the problem at hand.

The performance of kernel methods tends to be fairly insensitive to the
detailed choice of the functiong(z) (5), but somewhat more sensitive to the
value chosen for the smoothing parameterσ. A good value depends on the
(usually unknown) smoothness properties of the target function F ∗(x), as well
as the sample sizeN and the signal/noise ratio.

3. Decision Trees

Decision trees were developed largely in response to the limitations of
kernel methods. Detailed descriptions are contained in monographs by Brie-
man, Friedman, Olshen, and Stone (1983), and by Quinlan (1992). The mini-
mal description provided here is intended as an introduction sufficient for un-
derstanding what follows.

A decision tree partitions the space of all joint predictor variable val-
uesx into J–disjoint regions{Rj}

J
1 . A response valuêyj is assigned to each

corresponding regionRj . For a given set of joint predictor valuesx, the tree
predictionŷ = TJ(x) assigns as the response estimate, the value assigned to
the region containingx

x ∈ Rj ⇒ TJ(x) =ŷj . (7)

Given a set of regions, the optimal response values associated with each one are
easily obtained, namely the value that minimizes prediction risk in that region

ŷj = arg min
y′

Ey[L(y, y′) |x ∈ Rj]. (8)

180 J.H. Friedman

The difficult problem is to find a good set of regions{Rj}
J
1 . There are a huge

number of ways to partition the predictor variable space, the vast majority of
which would provide poor predictive performance. In the context of decision
trees, choice of a particular partition directly corresponds to choice of a dis-
tance functiond(x,x′) and scale parameterσ in kernel methods. Unlike with
kernel methods where this choice is the responsibility of the user, decision trees
attempt to use the data to estimate a good partition.

Unfortunately, finding the optimal partition requires computation that
grows exponentially with the number of regionsJ , so that this is only possi-
ble for very small values ofJ . All tree based methods use a greedy top–down
recursive partitioning strategy to induce a good set of regions given the training
data set (3). One starts with a single region covering the entire space of all joint
predictor variable values. This is partitioned into two regions by choosing an
optimal splitting predictor variablexj and a corresponding optimal split point
s. Pointsx for which xj ≤ s are defined to be in the left daughter region, and
those for whichxj > s comprise the right daughter region. Each of these two
daughter regions is then itself optimally partitioned intotwo daughters of its
own in the same manner, and so on. This recursive partitioningcontinues until
the observations within each region all have the same response valuey. At this
point a recursive recombination strategy (“tree pruning”)is employed in which
sibling regions are in turn merged in a bottom–up manner until the number of
regionsJ∗ that minimizes an estimate of future prediction risk is reached (see
Breiman, Friedman, Olshen, and Stone 1983, Ch. 3).

3.1 Decision Tree Properties

Decision trees are the most popular predictive learning method used in
data mining. There are a number of reasons for this. As with kernel methods,
decision trees represent a universal method. As the training data set becomes
arbitrarily large,N → ∞, tree based predictions (7) (8) approach those of the
target function (2),TJ(x) → F ∗(x), provided the number of regions grows
arbitrarily large,J(N)→∞, but at rate slower thanN .

In contrast to kernel methods, decision trees do produce a model sum-
mary. It takes the form of a binary tree graph. The root node of the tree rep-
resents the entire predictor variable space, and the (first) split into its daughter
regions. Edges connect the root to two descendent nodes belowit, represent-
ing these two daughter regions and their respective splits,and so on. Each
internal node of the tree represents an intermediate regionand its optimal split,
defined by a one of the predictor variablesxj and a slit points. The terminal
nodes represent the final region set{Rj}

J
1 used for prediction (7). It is this

binary tree graphic that is most responsible for the popularity of decision trees.

Predictive (Machine) Learning 181

No matter how high the dimensionality of the predictor variable space, or how
many variables are actually used for prediction (splits), the entire model can
be represented by this two–dimensional graphic, which can be plotted and then
examined for interpretation.

Tree based models have other advantages as well that accountfor their
popularity. Training (tree building) is relatively fast, scaling asnN log N with
the number of variablesn and training observationsN . Subsequent prediction
is extremely fast, scaling aslog J with the number of regionsJ . The predictor
variables need not all be numeric valued. Trees can seamlessly accommodate
binary and categorical variables. They also have a very elegant way of dealing
with missing variable values in both the training data and future observations to
be predicted (see Breiman et al. 1983, Ch. 5.3).

One property that sets tree based models apart from all othertechniques
is their invariance to monotone transformations of the predictor variables. Re-
placing any subset of the predictor variables{xj } by (possibly different) ar-
bitrary strictly monotone functions of them{ xj ← mj(xj)}, gives rise to the
same tree model. Thus, there is no issue of having to experiment with different
possible transformationsmj(xj) for each individual predictorxj , to try to find
the best ones. This invariance provides immunity to the presence of extreme
values “outliers” in the predictor variable space. It also provides invariance to
changing the measurement scales of the predictor variables, something to which
kernel methods can be very sensitive.

Another advantage of trees over kernel methods is fairly high resistance
to irrelevant predictor variables. As discussed in Section 2, the presence of
many such irrelevant variables can highly degrade the performance of kernel
methods based on generic kernels that involve all of the predictor variables
such as (6). Since the recursive tree building algorithm estimates the optimal
variable on which to split at each step, predictors unrelated to the response tend
not to be chosen for splitting. This is a consequence of attempting to find a
good partition based on the data. Also, trees have few tunable parameters so
they can be used as an “off–the–shelf” procedure.

The principal limitation of tree based methods is that in situations not
especially advantageous to them, their performance tends not to be competitive
with other methods that might be used in those situations. One problem limiting
accuracy is the piecewise–constant nature of the predicting model. The predic-
tionsŷj (8) are constant within each regionRj and sharply discontinuous across
region boundaries. This is purely an artifact of the model, and target functions
F ∗(x) (2) occurring in practice are not likely to share this property. Another
problem with trees is instability. Changing the values of just a few observations
can dramatically change the structure of the tree, and substantially change its
predictions. This leads to high variance in potential predictions TJ(x) at any

182 J.H. Friedman

particular prediction pointx over different training samples (3) that might be
drawn from the system under study. This is especially the casefor large trees.

Finally, trees fragment the data. As the recursive splittingproceeds each
daughter region contains fewer observations than its parent. At some point re-
gions will contain too few observations and cannot be further split. Paths from
the root to the terminal nodes tend to contain on average a relatively small frac-
tion of all of the predictor variables that thereby define the region boundaries.
Thus, each prediction involves only a relatively small number of predictor vari-
ables. If the target function is influenced by only a small number of (potentially
different) variables in different local regions of the predictor variable space,
then trees can produce accurate results. But, if the target function depends on
a substantial fraction of the predictors everywhere in the space, trees will have
problems.

4. Recent Advances

Both kernel methods and decision trees have been around for along time.
Trees have seen active use, especially in data mining applications. The clas-
sic kernel approach has seen somewhat less use. As discussedabove, both
methodologies have (different) advantages and disadvantages. Recently, these
two technologies have been completely revitalized in different ways by address-
ing different aspects of their corresponding weaknesses; support vector ma-
chines (Vapnik 1996) address the computational problems ofkernel methods,
and boosting (Freund and Shapire 1996; Friedman 2002) improvesthe accuracy
of decision trees.

4.1 Support Vector Machines (SVM)

A principal goal of the SVM approach is to fix the computational problem
of predicting with kernels (4). As discussed in Section 2, in order to make a
kernel prediction a pass over the entire training data base is required. For large
data sets this can be too time consuming and it requires that the entire data base
be stored in random access memory.

Support vector machines were introduced for the two–class classification
problem. Here the response variable realizes only two values (class labels)
which can be respectively encoded as

y =

{

+1 label = class 1
−1 label = class 2

. (9)

The average or expected value ofy given a set of joint predictor variable values
x is

Predictive (Machine) Learning 183

E [y |x] = 2 · Pr(y = +1 |x)− 1. (10)

Prediction error rate is minimized by predicting atx the class with the
highest probability, so that the optimal prediction is given by

y∗(x) = sign(E [y |x]).

From (4) the kernel estimate of (10) based on the training data(3) is given by

Ê [y |x] = FN (x) =
N
∑

i=1

yi K(x,xi)

/

N
∑

i=1

K(x,xi) (11)

and, assuming a strictly non negative kernelK(x,xi), the prediction estimate
is

ŷ(x) = sign(Ê [y |x]) = sign

(

N
∑

i=1

yi K(x,xi)

)

. (12)

Note that ignoring the denominator in (11) to obtain (12) removes information
concerning the absolute value ofPr(y = +1 |x); only its estimated sign is
retained for classification.

A support vector machine is a weighted kernel classifier

ŷ(x) = sign

(

N
∑

i=1

αi yi K(x,xi)

)

. (13)

Each training observation(yi,xi) has an associated coefficientαi additionally
used with the kernelK(x,xi) to evaluate the weighted sum (13) comprising the
kernel estimatêy(x). The goal is to choose a set of coefficient values{αi}

N
1 so

that manyαi = 0 while still maintaining prediction accuracy. The observations
associated with non zero valued coefficients{xi |αi 6= 0} are called “support
vectors”. Clearly from (13) only the support vectors are required to do predic-
tion. If the number of support vectors is a small fraction of the total number of
observations computation required for prediction is thereby much reduced.

4.1.1 Kernel Trick

In order to see how to accomplish this goal consider a different for-
mulation. Suppose that instead of using the original measured variablesx =
(x1, · · ·, xn) as the basis for prediction, one constructs a very large number of
(nonlinear) functions of them

{zk = hk(x)}M1 (14)

184 J.H. Friedman

for use in prediction. Here eachhk(x) is a different function (transformation)
of x. For any givenx, z = {zk}

M
1 represents a point in aM–dimensional

space whereM >> dim(x) = n. Thus, the number of “variables” used for
classification is dramatically expanded. The procedure constructs simplelinear
classifier inz–space

ŷ(z) = sign

(

β0 +

M
∑

k=1

βk zk

)

= sign

(

β0 +

M
∑

k=1

βk hk (x)

)

.

This is a highlynon–linear classifier inx–space owing to the nonlinearity of
the derived transformations{hk(x)}M1 .

An important ingredient for calculating such a linear classifier is the inner
product between the points representing two observationsi andj

z
T
i zj =

M
∑

k=1

zikzjk (15)

=
M
∑

k=1

hk (xi)hk (xj)

= H(xi,xj).

This (highly nonlinear) function of thex–variables,H(xi,xj), defines the sim-
ple bilinear inner productzT

i zj in z–space.
Suppose for example, the derived variables (14) were taken tobe alld–

degree polynomials in the original predictor variables{xj}
n
1 . Thus, the number

of derived variables isM = (n + 1)d, which is the order of computation for
obtainingzT

i zj directly from thez variables. However, using

z
T
i zj = H(xi,xj) = (xT

i xj + 1)d (16)

reduces the computation to ordern, the much smaller number of originally
measured variables. Thus, if for any particular set of derived variables (14),
the functionH(xi,xj) that defines the corresponding inner productszT

i zj in
terms of the originalx–variables can be found, computation can be considerably
reduced.

As an example of a very simple linear classifier inz–space, consider one
based on nearest–means.

ŷ(z) = sign(|| z− z̄− ||
2 − || z− z̄+ ||

2). (17)

Herez̄± are the respective means of they = +1 andy = −1 observations

z̄± =
1

N±

∑

yi=±1

zi.

Predictive (Machine) Learning 185

For simplicity, letN+ = N− = N/2. Choosing the midpoint between̄z+ and
z̄− as the coordinate system origin, the decision rule (17) can be expressed as

ŷ(z) = sign(zT (z̄+ − z̄−)) (18)

= sign





∑

yi=1

z
T
zi −

∑

yi=−1

z
T
zi





= sign

(

N
∑

i=1

yiz
T
zi

)

= sign

(

N
∑

i=1

yiH(x,xi)

)

.

Comparing this (18) with (12) (13), one sees that ordinary kernel rule ({αi =
1}N1) in x–space is the nearest–means classifier in thez–space of derived vari-
ables (14) whose inner product is given by the kernel functionzT

i zj = K(xi,xj).
Therefore to construct an (implicit) nearest means classifierin z–space, all com-
putations can be done inx–space because they only depend on evaluating in-
ner products. The explicit transformations (14) need never be defined or even
known.

4.1.2 Optimal Separating Hyperplane

Nearest–means is an especially simple linear classifier inz–space and it
leads to no compression:{αi = 1}N1 in (13). A support vector machine uses
a more “realistic” linear classifier inz–space, that can also be computed using
only inner products, for which often many of the coefficients have the value
zero (αi = 0). This classifier is the “optimal” separating hyperplane (OSH).

We consider first the case in which the observations representing the re-
spective two classes are linearly separable inz–space. This is often the case
since the dimensionM (14) of that (implicitly defined) space is very large. In
this case the OSH is the unique hyperplane that separates two classes while
maximizing the distance to the closest points in each class.Only this set of
closest points equidistant to the OSH are required to define it.These closest
points are called the support points (vectors). Their numbercan range from a
minimum of two to a maximum of the training sample sizeN . The “margin”
is defined to be the distance of support points from OSH. Thez–space linear
classifier is given by

ŷ(z) = sign

(

β∗
0 +

M
∑

k=1

β∗
kzk

)

(19)

186 J.H. Friedman

where(β∗
0 , β∗ = {β∗

k}
M
1) define the OSH. Their values can be determined

using standard quadratic programming techniques.
An OSH can also be defined for the case when the two classes are not

separable inz–space by allowing some points to be on wrong side of their class
margin. The amount by which they are allowed to do so is a regularization
(smoothing) parameter of the procedure. In both the separable and non separa-
ble cases the solution parameter values(β∗

0 , β∗) (19) are defined by points close
to boundary between the classes. The solution forβ∗ can be expressed as

β∗ =
N
∑

i=1

α∗
i yi zi

with α∗
i 6= 0 only for points on, or on the wrong side of, their class margin.

These are the support vectors. The SVM classifier is thereby

ŷ(z) = sign

(

β∗
0 +

N
∑

i=1

α∗
i yi z

T
zi

)

= sign



β∗
0 +

∑

α∗

i
6=0

α∗
i yi K(x,xi)



 .

This is a weighted kernel classifier involving only support vectors. Also
(not shown here), the quadratic program used to solve for theOSH involves the
data only through the inner productszT

i zj = K(xi,xj). Thus, one only needs
to specify the kernel function to implicitly definez–variables (kernel trick).

Besides the polynomial kernel (16), other popular kernels used with sup-
port vector machines are the “radial basis function” kernel

K(x,x′) = exp(− ||x− x
′ ||2/2σ2), (20)

and the “neural network” kernel

K(x,x′) = tanh(ax
T
x
′ + b). (21)

Note that both of these kernels (20) (21) involve additionaltuning parameters,
and produce infinite dimensional derived variable (14) spaces (M =∞).

4.1.3 Penalized Learning Formulation

The support vector machine was motivated above by the optimalsepa-
rating hyperplane in the high dimensional space of the derived variables (14).
There is another equivalent formulation in that space that shows that the SVM

Predictive (Machine) Learning 187

procedure is related to other well known statistically based methods. The para-
meters of the OSH (19) are the solution to

(β∗
0 , β∗) = arg min

β0,β

N
∑

i=1

[1− yi(β0 + βT
zi)]+ + λ · ||β ||2. (22)

Here the expression[η]+ represents the “positive part” of its argument; that is,
[η]+ = max(0, η). The “regularization” parameterλ is related to the SVM
smoothing parameter mentioned above. This expression (22) represents a pe-
nalized learning problem where the goal is to minimized the empirical risk on
the training data using as a loss criterion

L(y, F (z)) = [1− yF (z)]+, (23)

where
F (z) = β0 + βT

z,

subject to an increasing penalty for larger values of

||β ||2 =
n
∑

j=1

β2
j . (24)

This penalty (24) is well known and often used to regularize statistical proce-
dures, for example linear least squares regression leadingto ridge–regression
(Hoerl and Kannard 1970)

(β∗
0 , β∗) = arg min

β0,β

N
∑

i=1

[yi − (β0 + βT
zi)]

2 + λ · ||β ||2. (25)

The “hinge” loss criterion (23) is not familiar in statistics. However, it
is closely related to one that is well known in that field, namely conditional
negative log–likelihood associated with logistic regression

L(y, F (z)) = − log[1 + e−yF (z)]. (26)

In fact, one can view the SVM hinge loss as a piecewise–linear approximation
to (26). Unregularized logistic regression is one of the most popular methods
in statistics for treating binary response outcomes (9). Thus, a support vector
machine can be viewed as an approximation toregularizedlogistic regression
(in z–space) using the ridge–regression penalty (24).

This penalized learning formulation forms the basis for extending SVMs
to the regression setting where the response variabley assumes numeric values

188 J.H. Friedman

y ∈ R1, rather than binary values (9). One simply replaces the losscriterion
(23) in (22) with

L(y, F (z)) = (|y − F (z)| − ε)+. (27)

This is called the “ε–insensitive” loss and can be viewed as a piecewise–linear
approximation to the Huber 1964 loss

L(y, F (z)) =

{

|y − F (z)|2/2 |y − F (z)| ≤ ε
ε(|y − F (z)| − ε/2) |y − F (z)| > ε

(28)

often used for robust regression in statistics. This loss (28) is a compromise
between squared–error loss (25) and absolute–deviation lossL(y, F (z)) = |y−
F (z)|. The value of the “transition” pointε differentiates the errors that are
treated as “outliers” being subject to absolute–deviationloss, form the other
(smaller) errors that are subject to squared–error loss.

4.1.4 SVM Properties

Support vector machines inherit most of the advantages of ordinary ker-
nel methods discussed in Section 2. In addition, they can overcome the com-
putation problems associated with prediction, since only the support vectors
(αi 6= 0 in (13)) are required for making predictions. If the number of sup-
port vectors is much smaller that than the total sample sizeN , computation
is correspondingly reduced. This will tend to be the case whenthere is small
overlap between the respective distributions of the two classes in the space of
the original predictor variablesx (small Bayes error rate).

The computational savings in prediction are bought by dramatic increase
in computation required for training. Ordinary kernel methods (4) require no
training; the data set is the model. The quadratic program forobtaining the
optimal separating hyperplane (solving (22)) requires computation proportional
to thesquareof the sample size (N2), multiplied by the number of resulting
support vectors. There has been much research on fast algorithms for training
SVMs, extending computational feasibility to data sets of sizeN . 30, 000 or
so. However, they are still not feasible for really large data setsN & 100, 000.

SVMs share some of the disadvantages of ordinary kernel methods. They
are a black–box procedure with little interpretive value. Also, as with all kernel
methods, performance can be very sensitive to kernel (distance function) choice
(5). For good performance the kernel needs to be matched to the properties of
the target functionF ∗(x) (2), which are often unknown. However, when there
is a known “natural” distance for the problem, SVMs representvery powerful
learning machines.

Predictive (Machine) Learning 189

4.2 Boosted Trees

Boosting decision trees was first proposed by Freund and Shapire(1996).
The basic idea is rather than using just a single tree for prediction, a linear
combination of (many) trees

F (x) =
M
∑

m=1

amTm(x) (29)

is used instead. Here eachTm(x) is a decision tree of the type discussed in
Section 3 andam is its coefficient in the linear combination. This approach
maintains the (statistical) advantages of trees, while often dramatically increas-
ing accuracy over that of a single tree.

4.2.1 Training

The recursive partitioning technique for constructing a single tree on
the training data was discussed in Section 3. Algorithm 1 describes a forward
stagewise method for constructing a prediction machine based on a linear com-
bination ofM trees.

Algorithm 1
Forward stagewise boosting

1 F0(x) = 0
2 Form = 1 to M do:
3 (am, Tm(x)) = arg mina,T (x)

4
∑N

i=1 L(yi, Fm−1(xi)+ aT (xi))
5 Fm(x) =Fm−1(xi)+amTm(x)
6 EndFor
7 F (x) = FM (x) =

∑M
m=1 amTm(x)

The first line initializes the predicting function to everywhere have the
value zero. Lines 2 and 6 control theM iterations of the operations associ-
ated with lines 3–5. At each iterationm there is a current predicting function
Fm−1(x). At the first iteration this is the initial functionF0(x) = 0, whereas
for m > 1 it is the linear combination of them−1 trees induced at the previous
iterations. Lines 3 and 4 construct that treeTm(x), and find the corresponding
coefficientam, that minimize the estimated prediction risk (1) on the training
data whenamTm(x) is added to the current linear combinationFm−1(x). This
is then added to the current approximationFm−1(x) on line 5, producing a
current predicting functionFm(x) for the next (m + 1)st iteration.

At the first step,a1T1(x) is just the standard tree build on the data as
described in Section 3, since the current function isF0(x) = 0. At the next

190 J.H. Friedman

step, the estimated optimal treeT2(x) is found to add to it with coefficienta2,
producing the functionF2(x) =a1T1(x) + a2T2(x). This process is continued
for M steps, producing a predicting function consisting of a linear combination
of M trees (line 7).

The potentially difficult part of the algorithm is constructing the optimal
tree to add at each step. This will depend on the chosen loss function L(y, F).
For squared–error loss

L(y, F) = (y − F)2

the procedure is especially straight forward, since

L(y, Fm−1+ aT)=(y−Fm−1 − aT)2

= (rm − aT)2.

Hererm = y−Fm−1 is just the error (“residual”) from the current modelFm−1

at themth iteration. Thus each successive tree is built in the standard way
to best predict theerrors produced by the linear combination of the previous
trees. This basic idea can be extended to produce boosting algorithms for any
differentiable loss criterionL(y, F) (Friedman 2002).

As originally proposed the standard tree construction algorithm was treated
as a primitive in the boosting algorithm, inserted in lines 3and 4 to produced a
tree that best predicts the current errors{rim = yi − Fm−1(xi)}

N
1 . In particu-

lar, an optimal tree size was estimated at each step in the standard tree building
manner. This basically assumes that each tree will the last one in the sequence.
Since boosting often involves hundreds of trees, this assumption is far from
true and as a result accuracy suffers. A better strategy turns out to be (Friedman
2002) to use a constant tree size (J regions) at each iteration, where the value
of J is taken to be small, but not too small. Typically4 ≤ J ≤ 10 works well in
the context of boosting, with performance being fairly insensitive to particular
choices.

4.2.2 Regularization

Even if one restricts the size of the trees entering into a boosted tree
model it is still possible to fit the training data arbitrarilywell, reducing train-
ing error to zero, with a linear combination of enough trees.However, as is well
known in statistics, this is seldom the best thing to do. Fitting the training data
too well can increase prediction risk on future predictions. This is a phenom-
enon called “over–fitting”. Since each tree tries to best fit the errors associated
with the linear combination of previous trees, the trainingerror monotonically
decreases as more trees are included. This is, however, not the case forfuture
prediction error on data not used for training.

Predictive (Machine) Learning 191

Typically at the beginning, future prediction error decreases with increas-
ing number of treesM until at some pointM∗ a minimum is reached. For
M > M∗, future error tends to (more or less) monotonically increase as more
trees are added. Thus there is an optimal numberM∗ of trees to include in the
linear combination. This number will depend on the problem (target function
(2), training sample sizeN , and signal to noise ratio). Thus, in any given situa-
tion, the value ofM∗ is unknown and must be estimated from the training data
itself. This is most easily accomplished by the “early stopping” strategy used in
neural network training. The training data is randomly partitioned into learning
and test samples. The boosting is performed using only the data in the learning
sample. As iterations proceed and trees are added, prediction risk as estimated
on the test sample is monitored. At that point where a definite upward trend is
detected iterations stop andM∗ is estimated as the value ofM producing the
smallest prediction risk on the test sample.

Inhibiting the ability of a learning machine to fit the training data so as to
increase future performance is called a “method–of–regularization”. It can be
motivated from a frequentist perspective in terms of the “bias–variance trade–
off” (Geman, Bienenstock, and Doursat 1992) or by the Bayesian introduction
of a prior distribution over the space of solution functions. In either case, con-
trolling the number of trees is not the only way to regularize. Another method
commonly used in statistics is “shrinkage”. In the context of boosting, shrink-
age can be accomplished by replacing line 5 in Algorithm 1 by

Fm(x) = Fm−1(x) + (ν · am)Tm (x) . (30)

Here the contribution to the linear combination of the estimated best tree to
add at each step is reduced by a factor0 < ν ≤ 1. This “shrinkage” factor
or “learning rate” parameter controls the rate at which adding trees reduces
prediction risk on the learning sample; smaller values produce a slower rate so
that more trees are required to fit the learning data to the samedegree.

Shrinkage (30) was introduced in Friedman (2002) and shown empiri-
cally to dramatically improve the performance of all boosting methods. Smaller
learning rates were seen to produce more improvement, with adiminishing re-
turn for ν . 0.1, provided that the estimated optimal number of treesM∗(ν)
for that value ofν is used. This number increases with decreasing learning rate,
so that the price paid for better performance is increased computation.

4.2.3 Penalized Learning Formulation

The introduction of shrinkage (30) in boosting was originally justified
purely on empirical evidence and the reason for its success was a mystery. Re-
cently, this mystery has been solved (Hastie, Tibshirani, and Friedman 2001;

192 J.H. Friedman

Efron, Hastie, Johnstone, and Tibshirani 2002). Consider a learning machine
consisting of a linear combination ofall possible (J–region) trees:

F̂ (x) =
∑

âmTm(x) (31)

where

{âm} = arg min
{am}

N
∑

i=1

L
(

yi,
∑

amTm(xi)
)

+ λ · P ({am}). (32)

This is a penalized (regularized) linear regression, based on a chosen loss cri-
terionL, of the response values{yi}

N
1 on the predictors (trees){Tm(xi)}

N
i=1.

The first term in (32) is the prediction risk on the training dataand the second
is a penalty on the values of the coefficients{am}. This penalty is required to
regularize the solution because the number of all possibleJ–region trees is in-
finite. The value of the “regularization” parameterλ controls the strength of the
penalty. Its value is chosen to minimize an estimate of future prediction risk,
for example based on a left out test sample.

A commonly used penalty for regularization in statistics isthe “ridge”
penalty

P ({am}) =
∑

a2
m (33)

used in ridge–regression (25) and support vector machines (22). This encour-
ages small coefficient absolute values by penalizing thel2–norm of the coef-
ficient vector. Another penalty becoming increasingly popular is the “lasso”
(Tibshirani 1996)

P ({am}) =
∑

| am |. (34)

This also encourages small coefficient absolute values, but bypenalizing the
l1–norm. Both (33) and (34) increasingly penalize larger average absolute co-
efficient values. They differ in how they react to dispersion orvariation of the
absolute coefficient values. The ridge penalty discourages dispersion by penal-
izing variation in absolute values. It thus tends to producesolutions in which
coefficients tend to have equal absolute values and none with the value zero.
The lasso (34) is indifferent to dispersion and tends to produce solutions with
a much larger variation in the absolute values of the coefficients, with many of
them set to zero. The best penalty will depend on the (unknown population)
optimal coefficient values. If these have more or less equal absolute values the
ridge penalty (33) will produce better performance. On the other hand, if their
absolute values are highly diverse, especially with a few large values and many
small values, the lasso will provide higher accuracy.

As discussed in Hastie, Tibshirani, and Friedman (2001) and rigorously
derived in Efron et al. (2002), there is a connection between boosting (Al-
gorithm 1) with shrinkage (30) and penalized linear regression on all possible

Predictive (Machine) Learning 193

trees (31) (32) using the lasso penalty (34). They produce very similar solutions
as the shrinkage parameter becomes arbitrarily smallν → 0. The number of
treesM is inversely related to the penalty strength parameterλ; more boosted
trees corresponds to smaller values ofλ (less regularization). Using early stop-
ping to estimate the optimal numberM∗ is equivalent to estimating the optimal
value of the penalty strength parameterλ. Therefore, one can view the intro-
duction of shrinkage (30) with a small learning rateν . 0.1 as approximating
a learning machine based on all possible (J–region) trees with a lasso penalty
for regularization. The lasso is especially appropriate in this context because
among all possible trees only a small number will likely represent very good
predictors with population optimal absolute coefficient values substantially dif-
ferent from zero. As noted above, this is an especially bad situation for the
ridge penalty (33), but ideal for the lasso (34).

4.2.4 Boosted Tree Properties

Boosted trees maintain almost all of the advantages of single tree model-
ing described in Section 3.1 while often dramatically increasing their accuracy.
One of the properties of single tree models leading to inaccuracy is the coarse
piecewise constant nature of the resulting approximation.Since boosted tree
machines are linear combinations of individual trees, theyproduce a superposi-
tion of piecewise constant approximations. These are of course also piecewise
constant, but with many more pieces. The corresponding discontinuous jumps
are very much smaller and they are able to more accurately approximate smooth
target functions.

Boosting also dramatically reduces the instability associated with single
tree models. First only small trees (Section 4.2.1) are used which are inherently
more stable that the generally larger trees associated withsingle tree approxima-
tions. However, the big increase in stability results from the averaging process
associated with using the linear combination of a large number of trees. Aver-
aging reduces variance; that is why it plays such a fundamental role in statistical
estimation.

Finally, boosting mitigates the fragmentation problem plaguing single
tree models. Again only small trees are used which fragment the data to a much
lesser extent than large trees. Each boosting iteration usesthe entire data set
to build a small tree. Each respective tree can (if dictated bythe data) involve
different sets of predictor variables. Thus, each prediction can be influenced by
a large number of predictor variables associated with all ofthe trees involved in
the prediction if that is estimated to produce more accurateresults.

The computation associated with boosting trees roughly scales as
nN log N with the number of predictor variablesn and training sample sizeN .

194 J.H. Friedman

Thus, it can be applied to fairly large problems. For example,problems with
n ∽ 102–103 andN ∽ 105–106 are routinely feasible.

The one advantage of single decision trees not inherited by boosting is
interpretability. It is not possible to inspect the very large number of individual
tree components in order to discern the relationships between the responsey
and the predictorsx. Thus, like support vector machines, boosted tree machines
produce black–box models. Techniques for interpreting boosted trees as well
as other black–box models are described in Friedman (2002).

4.3 Connections

The preceding section has reviewed two of the most important advances
in machine learning in the recent past: support vector machines and boosted
decision trees. Although motivated from very different perspectives, these two
approaches share fundamental properties that may account for their respective
success. These similarities are most readily apparent from their respective pe-
nalized learning formulations (Section 4.1.3 and Section 4.2.3). Both build lin-
ear models in a very high dimensional space of derived variables, each of which
is a highly nonlinear function of the original predictor variablesx. For support
vector machines these derived variables (14) are implicitly defined through the
chosen kernelK(x,x′) defining their inner product (15). With boosted trees
these derived variables are all possible (J–region) decision trees (31) (32).

The coefficients defining the respective linear models in the derived space
for both methods are solutions to a penalized learning problem (22) (32) involv-
ing a loss criterionL(y, F) and a penalty on the coefficientsP ({am}). Support
vector machines useL(y, F) = (1− y F)+ for classificationy ∈ {−1, 1}, and
(27) for regressiony ∈ R1. Boosting can be used with any (differentiable) loss
criterionL(y, F) (Friedman 2002). The respective penaltiesP ({am}) are (24)
for SVMs and (34) with boosting. Additionally, both methods have a computa-
tional trick that allows all (implicit) calculations required to solve the learning
problem in the very high (usually infinite) dimensional spaceof the derived
variablesz to be performed in the space of the original variablesx. For support
vector machines this is the kernel trick (Section 4.1.1), whereas with boosting
it is forward stagewise tree building (Algorithm 1) with shrinkage (30).

The two approaches do have some basic differences. These involve the
particular derived variables defining the linear model in thehigh dimensional
space, and the penaltyP ({am}) on the corresponding coefficients. The per-
formance of any linear learning machine based on derived variables (14) will
depend on the detailed nature of those variables. That is, different transfor-
mations{hk(x)} will produce different learners as functions of the original
variablesx, and for any given problem some will be better than others. The

Predictive (Machine) Learning 195

prediction accuracy achieved by a particular set of transformations will depend
on the (unknown) target functionF ∗(x) (2). With support vector machines the
transformations are implicitly defined through the chosen kernel function. Thus
the problem of choosing transformations becomes, as with any kernel method,
one of choosing a particular kernel functionK(x,x′) (“kernel customizing”).

Although motivated here for use with decision trees, boosting can in fact
be implemented using any specified “base learner”h(x;p). This is a function of
the predictor variablesx characterized by a set of parametersp = {p1,p2, · · ·}.
A particular set of joint parameter valuesp indexes a particular function (trans-
formation) ofx, and the set of all functions induced over all possible jointpara-
meter values define the derived variables of the linear prediction machine in the
transformed space. If all of the parameters assume values ona finite discrete
set this derived space will be finite dimensional, otherwise it will have infinite
dimension. When the base learner is a decision tree the parameters represent
the identities of the predictor variables used for splitting, the split points, and
the response values assigned to the induced regions. The forward stagewise
approach can be used with any base learner by simply substituting it for the
decision treeT (x)→h(x;p) in lines 3–5 of Algorithm 1. Thus boosting pro-
vides explicit control on the choice of transformations to the high dimensional
space. So far boosting has seen greatest success with decision tree base learn-
ers, especially in data mining applications, owing to theiradvantages outlined
in Section 3.1. However, boosting other base learners can provide potentially
attractive alternatives in some situations.

Another difference between SVMs and boosting is the nature ofthe regu-
larizing penaltyP ({am}) that they implicitly employ. Support vector machines
use the “ridge” penalty (24). The effect of this penalty is to shrink the absolute
values of the coefficients{βm} from that of the unpenalized solutionλ = 0
(22), while discouraging dispersion among those absolute values. That is, it
prefers solutions in which the derived variables (14) all have similar influence
on the resulting linear model. Boosting implicitly uses the“lasso” penalty (34).
This also shrinks the coefficient absolute values, but it is indifferent to their dis-
persion. It tends to produce solutions with relatively few large absolute valued
coefficients and many with zero value.

If a very large number of the derived variables in the high dimensional
space are all highly relevant for prediction then the ridge penalty used by SVMs
will provide good results. This will be the case if the chosen kernelK(x,x′)
is well matched to the unknown target functionF ∗(x) (2). Kernels not well
matched to the target function will (implicitly) produce transformations (14)
many of which have little or no relevance to prediction. The homogenizing ef-
fect of the ridge penalty is to inflate estimates of their relevance while deflating
that of the truly relevant ones, thereby reducing prediction accuracy. Thus, the

196 J.H. Friedman

sharp sensitivity of SVMs on choice of a particular kernel canbe traced to the
implicit use of the ridge penalty (24).

By implicitly employing the lasso penalty (34), boosting anticipates that
only a small number of its derived variables are likely to be highly relevant to
prediction. The regularization effect of this penalty tendsto produce large coef-
ficient absolute values for those derived variables that appear to be relevant and
small (mostly zero) values for the others. This can sacrifice accuracy if the cho-
sen base learner happens to provide an especially appropriate space of derived
variables in which a large number turn out to be highly relevant. However, this
approach provides considerable robustness against less than optimal choices for
the base learner and thus the space of derived variables.

5. Conclusion

A choice between support vector machines and boosting depends on
one’s a priori knowledge concerning the problem at hand. If that knowledge
is sufficient to lead to the construction of an especially effective kernel func-
tion K(x,x′) then an SVM (or perhaps other kernel method) would be most
appropriate. If that knowledge can suggest an especially effective base learner
h(x;p) then boosting would likely produce superior results. As noted above,
boosting tends to be more robust to misspecification. These twotechniques
represent additional tools to be considered along with other machine learning
methods. The best tool for any particular application depends on the detailed
nature of that problem. As with any endeavor one must match the tool to the
problem. If little is known about which technique might be best in any given
application, several can be tried and effectiveness judgedon independent data
not used to construct the respective learning machines under consideration.

References

BELLMAN, R.E. (1961),Adaptive Control Processes, New Jersey: Princeton University Press.
BREIMAN, L. (1996), “Bagging Predictors”,Machine Learning 26, 123-140.
BREIMAN, L. (2001), Random Forests, Random Features, Technical Report, University of

California, Berkeley.
BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R., and STONE, C. (1983), Classification and

Regression Trees, Belmont CA: Wadsworth.
EFRON, B., HASTIE, T., JOHNSTONE, I., and TIBSHIRANI, R. (2004), “Least Angle Re-

gression”,Annals of Statistics 32, 407-499.
FREUND, Y., and SCHAPIRE, R. (1996), “Experiments with a New Boosting Algorithm”. In

Machine Learning: Proceedings of the Thirteenth International Conference, 148–156.
FRIEDMAN, J.H. (2002), “Greedy Function Approximation: A Gradient Boosting Machine”,

Annals of Statistics 29, 1189-1232.
GEMAN, S., BIENENSTOCK, E., and DOURSAT, R. (1992), “NeuralNetworks and the

Bias/variance Dilemma”,Neural Computation 4, 1-58.

Predictive (Machine) Learning 197

HASTIE, T., TIBSHIRANI, R., and FRIEDMAN, J.H. (2001),The Elements of Statistical
Learning, New York: Springer–Verlag.

HOERL, A.E. and KENNARD, R. (1970), “Ridge Regression: Biased Estimation for Nonorthog-
onal Problems”,Technometrics 12, 55-67.

NADARATA, E.A. (1964), “On Estimating Regression”,Theory of Probability and its Applica-
tions 10, 186-190.

QUINLAN, R. (1992),C4.5: Programs for Machine Learning, San Mateo: Morgan Kaufmann.
TIBSHIRANI, R. (1996), “Regression Shrinkage and Selection via theLasso”,Journal of the

Royal Statistical Society 58, 267-288.
VAPNIK, V.N. (1995),The Nature of Statistical Learning Theory, New York: Springer.
WAHBA, G. (1990),Spline Models for Observational Data,Philadelphia: SIAM.
WATSON, G.S. (1964), “Smooth Regression Analysis”,Sankhya: The Indian Journal of Sta-

tistics A, 26, 359-372.

